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Abstract—We use a quantum annealing D-Wave 2X computer
to obtain solutions to NP-hard sparse coding problems. To
reduce the dimensionality of the sparse coding problem to fit
on the quantum D-Wave 2X hardware, we passed downsampled
MNIST images through a bottleneck autoencoder. To establish a
benchmark for classification performance on this reduced dimen-
sional data set, we built two deep convolutional neural networks
(DCNNs). The first DCNN used an AlexNet-like architecture
and the second a state-of-the-art residual network (RESNET)
model, both implemented in TensorFlow. The two DCNNs yielded
classification scores of 94.54±0.7% and 98.8±0.1%, respectively.
As a control, we showed that both DCNN architectures produced
near-state-of-the-art classification performance (∼ 99%) on the
original MNIST images. To obtain a set of optimized features
for inferring sparse representations of the reduced dimensional
MNIST dataset, we imprinted on a random set of 47 image
patches followed by an off-line unsupervised learning algorithm
using stochastic gradient descent to optimize for sparse coding.
Our single-layer of sparse coding matched the stride and patch
size of the first convolutional layer of the AlexNet-like DCNN and
contained 47 fully-connected features, 47 being the maximum
number of dictionary elements that could be embedded onto
the D-Wave 2X hardware. When the sparse representations
inferred by the D-Wave 2X were passed to a linear support
vector machine, we obtained a classification score of 95.68%.
We found that the classification performance supported by
quantum inference was maximal at an optimal level of sparsity
corresponding to a critical value of the sparsity/reconstruction
error trade-off parameter that previous work has associated with
a second order phase transition, an observation supported by a
free energy analysis of D-Wave energy states. We mimicked a
transfer learning protocol by feeding the D-Wave representations
into a multilayer perceptron (MLP), yielding 98.48% classifi-
cation performance. The classification performance supported
by a single-layer of quantum inference was superior to that
supported by a classical matching pursuit algorithm set to the
same level of sparsity. Whereas the classification performance of
both DCNNs declined as the number of training examples was
reduced, the classification performance supported by quantum
inference was insensitive to the number of training examples.
We thus conclude that quantum inference supports classification
of reduced dimensional MNIST images exceeding that of a size-
matched AlexNet-like DCNN and nearly equivalent to a state-of-
the-art RESNET DCNN.

Index Terms—Sparse coding, Neuromorphic computing,
MNIST, Quantum annealing D-Wave 2X, Deep Convolutional
Neural Networks, Autoencoder

I. INTRODUCTION

Deep learning has yielded impressive advances across a
variety of machine learning tasks such as Alpha Go Zero
[1] and the ImageNet challenge [2]. However, deep neural
networks can be spoofed by adversarial examples [3], possibly
due to an underlying reliance on low-level image statistics
[4]. Moreover, the ability of deep neural networks to learn by
analogy [5] as well as the importance of network depth in
constructing abstract semantically-meaningful representations
[6] has been called into question. Unsupervised learning,
on the other hand, particularly Boltzmann Machines [7] and
sparse coding paradigms [8], seek to learn joint distributions or
causes directly from unlabeled data and thus may be less prone
to some of the issues that have plagued task-specific deep
learning approaches. For example, features optimized in an
entirely unsupervised manner for sparse coding can nonethe-
less support performance on image classification tasks that
is only slightly below that achieved by standard deep neural
network architectures such as AlexNet [9]. Sparse inference
in these examples, however, relies on a convex approximation
to the desired solution. Optimal sparse inference, especially
when derived from a highly overcomplete dictionary, is NP-
hard, making it difficult to fully assess the potential of such
approaches with existing algorithms. Quantum computers offer
a possible strategy for rapidly obtaining good solutions to
NP-hard sparse inference problems. Previous research [10]
demonstrated that models of sparse inference based on lateral
inhibition between binary neurons can be directly implemented
on the D-Wave 2X Quantum Annealing Computer. Here, we
show that on a suitably low-dimensional problem that fits
on available quantum annealing architectures, a single layer
of features optimized in an unsupervised manner for sparse
inference followed by a multi-layer perceptron (MLP) nearly
matches the classification performance of a state-of-the-art
RESNET deep convolutional neural network (DCNN) trained
in a fully supervised manner for the specific task in question.

Our paper is organized as follows. Sec. II, Sec. III, and
Sec. IV introduce concepts, methodology, and reduced dimen-
sional images for mapping a binary sparse coding classification
problem onto the D-Wave 2X machine. Classification based
on D-Wave generated sparse representations are compared



with with the state-of-the-art DCNN classifiers in Sec. V and
Sec. VI. Evidence for a phase-transition based on a free energy
analysis of solutions from the D-Wave quantum annealer is
presented in Sec. VII.

II. SPARSE-CODING

The hypothesis that neurons encode stimuli by inferring
sparse representations explains many of the response prop-
erties of simple cells in the mammalian primary visual cortex
[8], [11]. Given an overcomplete, non-orthonormal basis {φi},
inferring a sparse representation involves finding the minimal
set of non-zero activation coefficients a that accurately recon-
struct a given input signal X , corresponding to a minimum of
the following energy function:

E(X,φ,a) = min
{a}

[
1

2
||X − φa||2 + λ||a||0 ] (1)

where λ is a trade-off parameter that determines the balance
between reconstruction error of the original input image X
and the number of non-zero (sparse) activation coefficients. A
larger λ encourages sparser solutions. We define γ = rank(a)

rank(X)

as the overcompleteness of the basis {φi}. γ typically is
chosen such that γ � 1 which means that in general there will
exist many solutions which achieve a similarly small recon-
struction error ||X−φa||2 and our task is to find the sparsest
one. The energy function Eq. (1) is non-convex and contains
multiple local minima, so that finding a sparse representation
falls into an NP-hard complexity class of decision problems
[12].

III. QUANTUM INFERENCE

A. Mapping Sparse coding problem on D-Wave 2X
The D-Wave 2X [13] consists of 1152 quantum bits (qubits)

arranged into 12x12 unit cells, forming a Chimera structure
with dimensions 12x12x8. Sparse interactions between qubits
are restricted to the 16 connections within a unit cell and the
16 connections between nearest-neighboring unit cells [13].

In detail, each unit cell contains 4 qubits aligned along a
horizontal axis and 4 qubits aligned vertically. Within a unit
cell, the 4 qubits of a given orientation can only can interact
with the 4 qubits with the opposite orientation (details see
[10]). Between unit cells, interactions are only allowed be-
tween nearest-neighbors and even between nearest-neighbors
the allowed connections are restricted according to relative
orientation. A vertically (horizontally) oriented qubit can only
connect to the two vertically (horizontally) oriented qubits at
the same relative position in the nearest-neighboring unit cells
immediately above (left) and below (right) along one column
of the 12x12 grid. Thereby, in a chimera graph, one qubit can
interact with at most 6 other qubits.

The D-Wave 2X [13] finds optimal solutions to a (discrete)
Ising system consisting of Nq binary variables via quantum
annealing. Such Nq-body systems can be described by the
following classical Hamiltonian:

H(h,Q,a) =

Nq∑
i

hiai +

Nq∑
i<j

Qijaiaj (2)

with binary activation coefficients ai = {0, 1} ∀i ∈
(1, 2, 3, ..., Nq). This objective function defines a quadratic
unconstrained binary optimization (QUBO) problem. We cast
our sparse coding problem, Eq. (1), into QUBO form, Eq. (2),
by the transformations [14]:

hi = (−φTX + (λ+
1

2
))i,

Qij = (φTφ)ij . (3)

In Eq. (3), the bias term h (elements hi) in the Ising model is
proportional to the weighted input φTX while the coupling
term Q (elements Qij) corresponds to lateral competition (see
also [15]) between qubits given by the interaction matrix φTφ
[with self-interaction excluded and Q being symmetric i.e.
Qij = Qji ∀i 6= j, see Eq. (2)]. The trade-off parameter λ
corresponds to a uniform applied field that biases each qubit
to be in the zero state.

From Eq. (3), we infer a sparse representation to Eq. (1)
on D-Wave 2X hardware by associating each neuron with a
single feature φi, represented as a binary logical qubit, with
logical qubits embedded on the D-Wave physical chimera as
follows.

B. Embedding

Despite the sparsity of physical connections on the D-Wave,
it is nonetheless possible to construct graphs with arbitrarily
dense connectivity by employing “embedding” techniques.
Embedding works by chaining together physical qubits so as to
extend the effective connectivity but at the cost of reducing the
total number of available logical qubits. Because logical qubits
do not need to follow the connection rules that physical qubits
do, it is possible to implement general QUBO problems with
arbitrarily dense connectivity on the sparsely connected D-
Wave chimera. The D-Wave API provides a heuristic algorithm
that searches for an optimal embedding that minimizes the
number of physical qubits that are chained together.

The exact mapping of a spin glass problem onto the physical
D-Wave 2X chimera, including defects, can typically contain
approximately Nq ∼ 1000 spins (qubits) with > 3000 local
spin-spin interactions. In contrast, embedding an arbitrary
QUBO problem onto the same 2X chimera typically allows
no more than Nq ∼ 47 nodes (logical qubits) but these nodes
may be fully connected. Thus, embedding effectively trades
qubits for connectivity.

Because a logical qubit is assigned only two possibilities 0
and 1, each neuron is treated as a “quantum object” bearing
two possibilities: firing with maximum activation with coeffi-
cient 1 and silent with coefficient 0. Because each neuron is a
quantum object, the state of any neuron is described in general
by a superposition of 1 and 0, in which the neuron is both
active and non-active at the same time, a logical impossibility
for any classical system. Due to this quantum superposition,
the annealing processing in D-Wave allows to explore the
entire energy landscape at once.



Fig. 1: 47 12x12 randomly selected reduced dimensional im-
ages reconstructed through a bottleneck autoencoder, yielding
an undercomplete dictionary of 47 features for generating
sparse representations of the reduced dimensional MNIST
images. To construct an overcomplete dictionary, we randomly
selected a set of 47 6x6 patches and divided each reduced
dimensional MNIST image into overlapping 6x6 patches with
a stride of 2 and separately generated a sparse representation of
each 6x6 patch. The resulting 47 imprinted features, whether
12x12 or 6x6, were further refined using unsupervised SGD
to optimize for sparse reconstruction.

Fig. 2: Top: Original MNIST images downsampled to 12x12,
Middle: Reconstructed images from bottleneck autoencoder,
Bottom: D-Wave reconstruction using undercomplete dictio-
nary based on randomly selected imprinted features.

IV. D-WAVE INPUTS: REDUCED DIMENSIONAL IMAGES

We first downsampled original 28x28 MNIST images to
12x12 and trained a bottleneck autoencoder [16] (using Ten-
sorFlow) that consisted of 47 neurons at its narrowest point.
The resulting autoencoder generated images, examples of
which are shown in Fig. 1, constitute a database of images
with greatly reduced dimensionality suitable for analysis by
the D-Wave 2X. Constructing a dictionary based on a ran-
domly chosen set of 47 12x12 reduced dimensional MNIST
images results in undercomplete basis γ = 47/144 (≈ 0.33)
� 1. We used this undercomplete basis to demonstrate that

it was possible to obtain sparse representations of reduced
dimensional MNIST images on the D-Wave 2X (Fig. 2). Using
an undercomplete basis however reduces the advantages of
sparse inference as the resulting representations are unlikely
to be sparse.

V. CLASSIFICATION PERFORMANCE: UNDERCOMPLETE
DICTIONARY

A. Image classification

Due to computational limitations, it was not possible to
perform all of the analyses presented in this paper using an
overcomplete dictionary for generating sparse representations.
We therefore first present benchmark performance using an
undercomplete dictionary. Benchmark results obtained using
an undercomplete dictionary helps to illustrate the advantages
of sparse inference on the D-Wave quantum annealing machine
when using an overcomplete basis.

Recall that reduced dimensional images were obtained by
first downsampling to 12x12 and then reconstructing through
a bottleneck autoencoder employing a hidden layer containing
47 feature vectors, thereby “compressing” the 144 pixels in
the downsampled images to a 47 dimensional manifold. Thus,
using a dictionary containing 47 features might be considered
complete, although nominally γ = 47/144.

Fig. 3(a) shows classification results on reduced dimensional
12x12 MNIST images using an undercomplete dictionary
for sparse coding containing 47 randomly selected imprinted
features. The sparse representations generated by the D-Wave
2X for the complete set of 55 K reduced dimensional MNIST
images was passed to a linear SVM. As a function of the
trade-off parameter λ, classification performance using an
undercomplete basis peaked at approximately 80%. Here,
sparsity was approximately {16%, 13%, 12%, 9%, 5%} for λ
of {1.5, 1.7, 2.0, 2.5, 3.0}, respectively. By comparison, simply
passing the latent representations from the hidden layer of the
autoencoder to an SVM yielded a classification score nearly
88% [see Fig. 3(a), note that a bottleneck autoencoder is
independent of λ]. Thus, when using an undercomplete basis,
we find no advantage to generating sparse representations on
the D-Wave 2X.

Randomly selected imprinted features are unlikely to be
optimal for sparse coding, which likely reduced the classifi-
cation performance using the resulting sparse representations.
We therefore conducted unsupervised training to optimize our
undercomplete basis for sparse coding. Our unsupervised train-
ing procedure used a local Hebbian rule with momentum for
computing weight updates to optimize our initially imprinted
features φ.

The SGD loop required generating sparse representations on
the D-Wave 2X for a randomly chosen mini-batch consisting
of 10K reduced dimensional MNIST images, from which we
computed an average weight update for the undercomplete
dictionary φ. This cycle was repeated for approximately a
few thousand steps until the loss function saturated. After
unsupervised optimization, we obtained an approximately 4%
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Fig. 3: (Color online) (a): Image classification obtained by
feeding the sparse representations of the downsampled autoen-
coded MNIST images generated by the D-Wave 2X before
(blue curve) and after unsupervised feature optimization (red
curve) to a linear SVM. Dataset contains 55 K images.
The classification result obtained using the autoencoder la-
tent representations as input to a linear SVM was 87.83%
(yellow line). (b): Image classification on up to 4, 000 sparse
representations of downsampled autoencoded MNIST images
generated by the D-Wave 2X using the lowest-energy state
(blue circles) and quantum augmentation using the 30 lowest
energy level states (red diamonds). Training and test sets were
divided in a ratio of 5/1, respectively. Dataset size is in units
of 1, 000 images.

increase in the peak classification accuracy [red curve in
Fig. 3(a)].

B. Quantum augmentation

Quantum annealing on the D-Wave is able to return multiple
sparse solutions corresponding to a set of good (local) minima
given an input {h,Q}. We examined whether these multiple
sparse solutions could support improved image classification
by treating these distinct representations analogously to stan-
dard image augmentation procedures. Due to the cost of
computation for this task, we present the classification scores
on only 2 K and 4 K “quantum augmentation” images (with
the ratio between training/test sets 5/1) of the reduced dataset
for the “best” λ = 1.7 obtained from Fig. 3(a). We show

in Fig. 3(b) that a quantum augmentation consisting of 30
sparse solutions extracted from the 2X hardware with an
undercomplete dictionary gains about ∼ 2% in classification
in this case.

VI. CLASSIFICATION PERFORMANCE: OVERCOMPLETE
DICTIONARY

The above classification results obtained via quantum infer-
ence used a single 1x1x47 feature map fed directly into a linear
SVM. In this section, we generate sparse representations on
the D-Wave 2X using an overcomplete dictionary by breaking
the 12x12 reduced-dimensional inputs into overlapping 6x6
tiles.

A. Patch, stride

To construct an overcomplete dictionary (i.e. γ > 1), we
represent each image as a set of overlapping patches. Sliding a
6x6 patch throughout the entire image of total size 12x12 with
a stride s = 2, we obtain a set of 4x4 (= 16) patches for each
image. The dictionary, which now consists of 47 randomly
selected 6x6 patches, has overcompleteness of γ = 47/36 =
1.31. Consequently, the set of feature maps now increases from
1x1x47 to 4x4x47.

B. Evaluating classification performance

To determine an optimal value for the trade-off parameter
λ, we study the four different cases of λ = {0.5, 0.7, 1.0, 1.5}.
This corresponds, respectively, to sparsity of {14%, 12%, 10%,
and 8%} on average. For classification, we employed the
“feature extraction” technique (see for example Ref. [9]) to
obtain a sparse representation for each image by concatenating
the binary sparse coefficients for each 6x6 image patch into a
4x4x47 array. We used the LIBLINEAR package [17] to train
a linear SVM classifier on this 10-category image classification
task using the combined sparse coefficients. For the first 20K
images, because each 12x12 image has 16 6x6 overlapping
tiles, there were 16x20K (= 320K) input Hamiltonians to
solve using the D-Wave 2X. As a function of λ, we obtained
the classification scores shown in Fig. 4. By replacing the
undercomplete dictionary applied to the entire image with
an overcomplete dictionary applied to each image patch, we
improved our classification results based on quantum inference
substantially. We obtain a peak behavior for λc = 0.7 which
translates into ∼ 12% of sparsity, corresponding to an average
of 5− 6 active neurons to reconstruct each 6x6 tile.

Image classification: D-Wave 2X vs. DCNN
As an initial benchmark, we started with an AlexNet-like
DCNN architecture that approximately matched the size of
the latent representations generated by the D-Wave 2X. The
AlexNet-like DCNN possessed an initial convolutional layer
with a stride of 2 and 12 features, yielding a set 12 4x4 feature
maps, each being the same size as the feature maps generated
by the D-Wave 2X. A subsequent set of 16 5x5 feature maps
was followed by a final all-to-all layer using 47 features, the
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Fig. 4: (Color online) Image classification using an overcom-
plete dictionary applied separately to overlapping 6x6 image
patches on the D-Wave 2X for the first 20 K images of
our 12x12 autoencoded MNIST dataset plotted as a function
of λ. Training and test sets were divided in a ratio of 5/1,
respectively. This procedure established a best value of λ.

same number of feature maps on the D-Wave 2X, which in
turn fed into a SoftMAX classifier (cross-entropy loss).

Fig. 5 shows that quantum inference enabled superior clas-
sification performance compared to an AlexNet-like DCNN.
When applied to the full reduced dimensional MNIST dataset,
the classification accuracy of the AlexNet-like DCNN was
94.54 ± 0.7% (green connected circles with error bars). The
same AlexNet-like DCNN produced near-state-of-the-art re-
sults of ∼ 98.9% on the original MNIST 28x28 pixel dataset
(not plotted), affirming the validity of our DCNN implemen-
tation. Likewise, if we remove the autoencoder procedure and
use the downsampled MNIST images to train the AlexNet-
like DCNN model, we obtained an accuracy of 96.45% (not
plotted), consistent with the expectation that the autoencoder
destroys some information. Sparse representations generated
by the D-Wave 2X, when fed to a linear SVM classifier
[17], produced a slightly higher classification score than the
AlexNet-like DCNN, 95.68% (purple circles) and exhibited
almost no variation between reinitialized runs. Additionally,
classification by the AlexNet-like DCNN declined as the size
the training set was reduced whereas classification based on
quantum inference showed no such degradation. Matching
pursuit [18], a classical technique for solving sparse coding
problems, produced a lower classification score than did
quantum inference when the former was configured to match
the same sparsity as the solutions generated by the D-Wave
(∼ 12− 14%).

We further examined a transfer learning procedure where
the D-Wave sparse representations were fed into a multilayer
perceptron (MLP), yielding a classification of ∼ 98.48% (red
circles). Feeding the sparse representations produced by a
classical matching pursuit algorithm into an MLP yielded a
lower classification score of ∼ 96.34% (yellow diamonds),
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Fig. 5: (Color online) Image classification on the D-Wave
2X, near state-of-the-art DCNN (AlexNet-like) built with
TensorFlow, and matching pursuit for our reduced dimensional
12x12 autoencoded MNIST dataset plotted as a function of
dataset size. Training and test sets in each case are in units of
1,000 images and divided in a ratio of 5/1, respectively. We
also show classification results using state-of-the-art RESNET
for our customized MNIST images.

suggesting that quantum inference may yield superior solu-
tions compared to classical approaches.

The AlexNet-like DCNN was tailored to approximately
match the size of the sparse representations generated by
the D-Wave 2X. We also tested a state-of-the-art (RESNET)
DCNN and obtained a classification of ∼ 98.8% (blue squares)
on the reduced MNIST database. While RESNET yielded
a slightly higher classification score using all of the avail-
able training data, this advantage disappeared as the amount
of training data was reduced. Using a reduced dimensional
dataset that fits onto the D-Wave 2X hardware thus reveals
the benefits of quantum inference for image classification.

VII. PHASE-TRANSITION IN A SPARSE-CODING MODEL

Previous work [19] has revealed the existence of a 2nd
order phase transition in the sparse representations generated
by Locally Competitive Algorithm (LCA) implemented using
continuously-valued neurons simulated on a conventional digi-
tal computer. Here, we search of evidence of a phase transition
in the binary sparse coding problem solved on the D-Wave 2X
by assuming a thermal Boltzmann distribution for the spectrum
of energy states generated by different annealing runs.

We consider the sparse representation of one randomly-
chosen 12x12 reduced dimensional MNIST image. To explore
statistical properties of the sparse representations inferred on
a D-Wave hardware, we treat the trade-off parameter λ as an
“effective” (magnetic) field, where λ “couples” to an Ising
model through the qubit-field interaction in h. Next, the
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Fig. 6: (Color online) Top: Reconstruction error in a denois-
ing sparse coding system for one autoencoded-12x12 image
plotted as a function of sparsity threshold. Bottom: Second
derivative of the free energy with respect to λ of the system
described in the top plot at temperature kBT = 10−2 (energy
unit).

energy spectrum {Ei} is obtained using different annealing
runs, corresponding to parameter deviations in {h, Q}. We
executed multiple runs and obtained over ten thousand sparse
solutions along with the corresponding energy spectrum for a
particular reduced dimensional MNIST image. We used that
energy spectrum to examine the 2nd derivative of free energy,
defined as F = − 1

β logZ, with respect to the “field” λ in
Fig. 6. Here, Z =

∑Ns

i=1 e
−βEi is defined as partition function

( [20]), β = 1/kBT with kB is Boltzmann constant and T
the temperature of the embedded sparse coding model. Ns is
the total number of Nq-body states obtained in this case by
solving Eqs. (1) and (3) to yield the corresponding energy
set {Ei}. The reconstruction error calculated using the lowest-
energy level as a function of sparsity λ, presented in Fig. 6(a),
shows that there exists a critical λc ≈ 2 that yields the best
denoising result (i.e. yields the most accurate reconstruction
of the input). This optimal behavior coincides with sharp
discontinuity around λ ≈ 2 in the second derivative of F
with respect to λ in Fig. 6(b). The critical point is consistent
with the optimal values of λ found above.

VIII. CONCLUSIONS

We have explored classification performance on
dimensionally-reduced binary MNIST images using sparse
representations generated by the D-Wave 2X quantum
annealing computer at a putative critical value of sparsity.
Given the limited number of qubits available on the
D-Wave 2X, we first used a bottleneck autoencoder to
reduce the intrinsic dimensionality of MNIST images,
which originally consisted of 28x28=784 binary values. A
bottleneck autoencoder is trained in a standard manner using
backprop and SGD to reconstruct, as accurately as possible,
input images that have been forced through a narrow waist,
corresponding to a latent representation whose dimensionality
(number of neurons in the layer comprising the waist of
the hourglass) is less than the dimensionality of the original
image.

To investigate how quantum inference might contribute to
classification performance, we added lateral inhibition between
47 features obtained by randomly choosing (imprinting) from
a subset of reduced 12x12 autoencoder-generated MNIST
images, allowing us to infer a sparse binary representation
for each reduced-dimensional image via quantum inference.
Although the reduced database itself was constructed to live
on a 47-dimensional manifold, local regions of the manifold
are likely to be characterized by an even smaller number
of basis elements. In principle, this reduced basis can be
inferred via quantum inference. As a target benchmark, we
trained standard deep neural network classifiers, implemented
in TensorFlow, on our reduced dimensional database. A size
matched deep learning architecture yielded a classification
score of 94.54 ± 0.7% compared to 98.48% obtained by
feeding sparse representations inferred on the D-Wave 2X into
an MLP. Classification performance of a state-of-the-art model
(RESNET) was only slightly higher. The RESNET model
however contains orders of magnitude more neurons and free
parameters compared to quantum inference. As a result, the
RESNET model was more susceptible to degradation as the
number of training examples was reduced. We showed that
quantum inference on the D-Wave 2X, using approximately
47 binary neurons (logical qubits) and only a single layer
of convolutional kernels optimized for sparse reconstruction
using an unsupervised training procedure, could match the
classification performance obtained by a state-of-the-art deep
neural network as the size of the training set was reduced.

Quantum inference on the D-Wave hardware allowed us to
examine a postulated thermodynamical phase-transition in a
sparse coding system by analyzing a large number of energy
states obeying a Boltzmann distribution. We found a critical
sparsity λc as the minimal point in the reconstruction error and
this optimal λc that appears as sharp discontinuity in the 2nd
differentiation of the thermodynamically averaged free energy
produces the smallest image classification error.
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